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Abstract 
By research on technology about digital image basing on 

encode of iterated function system, IFS model of image expression 
is set up, and the steps and the methods about the recognition of 
the characteristics of fingerprint image basing on encode of 
iterated function system are put forward as well. With the model 
and the computing similar parameter between source image and 
result image， the characteristics of fingerprint image can be 
quickly acquired. Thus, the recognition of fingerprint image can be 
realized. The result of the example indicates that the computing 
velocity of IFS model is 5~10 times quicker than the traditional 
image matrix digital image. Meanwhile, the ratio of its recognition 
reaches to 99.86 percent. IFS model produces a fairly good effect 
by application on the identity authentication at the entrance of a 
network user on the platform of information network under WEB. 

Algorithm IFS is based on an extension of the mathematical 
theory of iterated function system which permits the use of 
transformations which do not shrink spatial distance. It can be used 
on recognition technology about the characteristics of fingerprint 
image[1]. 

1 IFS encode  
An affine transformation  from two dimensional 

space
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2R  into itself is defined by  
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Where the ’s and ’s real constants. If A denotes the 

matrix ( ), 

ija ijb

ija b denotes the vector , where t denotes the 

transpose, and 

tbb ),( 21

x denotes the vector , then we write: txx ),( 21
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The affine transformation is specified by six real numbers. 

Given an affine transformation, one can always find a nonnegative 
number s  so that 

yxsyx −⋅≤− )()( ωω   for all x  and y  

We call the smallest number s  so that this is true the 
Lipschitz constant for .ω   
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Such an affine transformation is call contractive if 1<s , and it 
is called a symmetry if  

yxyx −=− )()( ωω     For all x  and y  

It is expansive if its Lipschitz constant is greater than one. A 
two-dimensional IFS consists of a set of N affine transformation, 
N an integer, denoted by  

          { }Nωωωω K,,, 321 , 
Each taking 2R  into 2R  together with a set of probabilities 
{ }Npppp K,,, 321 , 
Where each  and  0>ip
           1321 =++++ Npppp K  
Let n  denote the Lipschitz constant for each s .,2,1 Nn K=  

Then we say that the IFS code obeys the average contractivity 
condition if 

            1321
321 <⋅⋅⋅⋅ Np

N
ppp ssss K

An IFS code is an IFS  
          { }Nnpnn ,,2,1:, K=ω  
such that the average contractivity condition is obeyed[2]. 

2  IFS model of image expression 
Let { }Nnpnn ,,2,1:, K=ω  be an IFS code. Then by a 

theorem of Barnsley and Elton there is a unique associated 
geometrical object, denoted by А, a subset of 2R , called the 
attractor of the IFS. There is also a unique associated measure 
denoted by μ .This measure may be thought of as a distribution of 
infinitely fine sand, of total mass one, lying upon A , as described 
intuitively above. The measure of a subset β of А is the weight of 
sand which lies upon β. It is denoted by μ(β).The underlying 
model associated with an IFS code consists of the attractor А 
together with the measure μ, and is symbolized by (А,μ). 

The structure of А is controlled by the affine maps 
{ }Nωωωω K,,, 321  in the IFS code. That is, the N⋅6  number in 
the affine maps fix the geometry of the underlying model and will 
in turn determine the geometry of associated images. The measure 
μ is governed by the probabilities { }N in the IFS 
code. It is this measure which provides the rendering information 
for images

pppp K,,, 321

[3]. 
The underlying model (А,μ) may be thought of as a subset of 

two-dimensional space whose geometry and coloration ( fixed by 
the measure ) are defined at the finest imaginable resolution. The 
way in which the underlying model defines images, via projection 
through viewing windows onto pixels, is described in the next 
section.  

Let (А,μ)be the underlying model associated with an IFS code. 
Let a viewing window be defined by  

       { }maxminmaxmin ,:),( yyyxxxyxV ≤≤≤≤=  
It is assumed that V  has positive measure, namely μ (V)>0  

Let a viewing resolution be specified by partitioning V into a grid 
of L×M rectangles as follows. The interval [ is  divided 
into L subintervals

)maxmin , xx
[ )1. +ll xx ，for l=0,1…,L-1，where 
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Similarly is divided into M subintervals 
for  where  

[ )maxmin.yy
[ )1. +mm yy 1,1,0 −= Mm K

      
M
myyyym )( minmaxmin −+=  

Let denoted the rectangle mlV ,

    },:),{( 111, ++ <≤<≤= mmlml yyyxxxyxV
Then the digitized model associated with Vat resolution 

ML× is denoted by ),,(~ MLVI .It consists of all those rectangles 
 such that mlV , ( ) 0, ≠mlVμ ,(that is, all those rectangles upon which 

there resides a positive mass of sand). 
The digitized model ),,(~ MLVI  is rendered by assigning a 

single RGB index to each of its rectangles . To achieve this, 
one specifies a color map f which associates integer color indices 
with real number in [0,1]. Let numcols be the number of different 
color which are to be used. One might choose for example nine 
grey tones on an RGB system; then numcols=9 and color index i is 
associated with i·12.5% Red, i·12.5% Green, and i·12.5% Blue, for 
i =1,2,…,8. The interval [0,1] is broken up into subintervals 
according to  

mlV ,

0=C0<C1<C2<…<Cnumcols=1 
Let the color map f be defined by f(0)=0 and for x>0 by  
          f(x)=max{ i:x>Ci} 
Let maxμ denote the maximum of the measure μcontained in 

one of the rectangles  mlV ,
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 ),,(~ MLVI is rendered by assigning color index 

)
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μ
μ mlV

f （ ）                 2   

to the rectangle . mlV ,

In summary, the underlying model is converted to an image, 
corresponding to a viewing window V and resolution ML× , by 
digitizing at resolution ML×  the part of the attractor which lies 
within the viewing window. The rendering values for this 
digitization are determined by the measure ( )mlV ,μ  , (which 
corresponds to the masses of sand which lie upon the pixels).           

3  The algorithm for computing rendered 
images 

The following algorithm starts from an IFS code 
{ Nnpnn ,,2,1:, K= }ω together with a specified viewing window 
V and resolution ML× . It computes the associated IFS image, as 
defined in the previous section. In effect a random walk in R2  is 
generated from the IFS code, and the measures )( ,mtVμ  for the 
pixels are obtained from the relative frequencies with which the 
different rectangles Vt,m are visited.  

An initial point （x0,y0） needs to be fixed. For simplicity 
assume that the affine transformation bxAxw

rrr
+=)(1  is a 

（contraction. Then, if we choose x0,y0） as a fixed point of w1 
（we know a priori that x0,y0） belongs to the image. This is 

obtained by solving the linear equation 
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An ML×  array I of integers is associated with the digitized 
window. A total number of iterations, num, large compared to 

ML×  also needs to be specified. The random walk part of the 
algorithm now proceeds as shown in the code of RenderIFS(). The 

ML× array I is initialized to zero. After completion of the 
algorithm of the array I are given color index values according to 
Eqn.(2),i.e. 

              [ ][ ])(
maxI

mlIf  

Providing that num is sufficiently large, the ergodic theorem 
of Elton ensures that, with very high probability, the rendering 
value  assigned to the pixel (l,m) stabilizes to the unique value 

defined as 

mlI ,

)
)(

(
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,

μ
μ mlV

f  . It is this algorithm which is used to 

calculate all of the images given with this article. The key process 
of this algorithm is showed as Figure 1. 

 
Figure 1   the key process of the RenderIFS() algorithm 

 

4  The result of the experiment 
In this experiment, a 256× 256 fingerprint image is used as a 

reference image, calculate 64× 64 reproduce is image which has a 
similar shape, the block is 4 × 4.The result of this experiment 
deduces the relationship between search step length and the peak 
value of SNR which is showed in the Table 1.It can be seen that 
the peak value of SNR increases regularly when the grads of the 
search step reduce[4,5]. 
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Source image                    IFS result image 

Figure.2   Source image and IFS result image

Table 1 the relationship between search step length and the peak value of SNR 
search step length 10 8 6 4 2 
search step length and the peak value of SNR 30.2252 33.9786 35.2564 37.6742 39.2236 

 
The result via the programming example is indicated: even if 

under the condition that the source image is no strong with the 
reproduce image in comparability, we still can carry out a iteration 
on source image and get preferably result, expressed as the Fig.2, 
The Calculating rate of this model is five to ten times faster than 
the traditional image matrix numeric method. The rate of the 
image Characteristic of Recognition is 99.86%.and fairly good 
application of recognition rate in the figure authentication that the 
users log on information network platform based WEB. 
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